PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.
نویسندگان
چکیده
Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.
منابع مشابه
Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes.
Phosphatidylinositol phosphates are involved in signal transduction, cytoskeletal organization, and membrane trafficking. Inositol polyphosphates, produced from phosphatidylinositol phosphates by the phospholipase C-dependent pathway, regulate chromatin remodeling. We used genome-wide expression analysis to further investigate the roles of Plc1p (phosphoinositide-specific phospholipase C in Sac...
متن کاملChromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway
In Saccharomyces cerevisiae, the transcriptional program triggered by cell wall stress is coordinated by Slt2/Mpk1, the mitogen-activated protein kinase (MAPK) of the cell wall integrity (CWI) pathway, and is mostly mediated by the transcription factor Rlm1. Here we show that the SWI/SNF chromatin-remodeling complex plays a critical role in orchestrating the transcriptional response regulated b...
متن کاملTor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth.
In the budding yeast Saccharomyces cerevisiae, the Tor and cyclic AMP-protein kinase A (cAMP-PKA) signaling cascades respond to nutrients and regulate coordinately the expression of genes required for cell growth, including ribosomal protein (RP) and stress-responsive (STRE) genes. The inhibition of Tor signaling by rapamycin results in repression of the RP genes and induction of the STRE genes...
متن کاملRepressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae.
The yeast Saccharomyces cerevisiae responds to environmental stress by rapidly altering the expression of large sets of genes. We report evidence that the transcriptional repressors Nrg1 and Nrg2 (Nrg1/Nrg2), which were previously implicated in glucose repression, regulate a set of stress-responsive genes. Genome-wide expression analysis identified 150 genes that were upregulated in nrg1Delta n...
متن کاملHog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae
When challenged with osmotic shock, Saccharomyces cerevisiae induces hundreds of genes, despite a concurrent reduction in overall transcriptional capacity. The stress-responsive MAP kinase Hog1 activates expression of specific genes through interactions with chromatin remodeling enzymes, transcription factors, and RNA polymerase II. However, it is not clear whether Hog1 is involved more globall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1849 11 شماره
صفحات -
تاریخ انتشار 2015